Translate

Sunday, August 31, 2014

Race and the Vote in the Pacific Northwest (Whatcom County) : Part II

"We face, therefore, a moral crisis as a country and a people. It cannot be met by repressive police action. It cannot be left to increased demonstrations in the streets. It cannot be quieted by token moves or talk. It is a time to act in the Congress, in your State and local legislative body and, above all, in all of our daily lives. It is not enough to pin the blame on others, to say this a problem of one section of the country or another, or deplore the facts that we face. A great change is at hand, and our task, our obligation, is to make that revolution, that change, peaceful and constructive for all. Those who do nothing are inviting shame, as well as violence. Those who act boldly are recognizing right, as well as reality." - President John Fitzgerald Kennedy on Civil Rights June 11, 1963.
This piece continues my work on CVAP data and demographics in Whatcom County (See 1, 2).  Most of the code (and some ouput) for this piece is here.  My guess is that the key piece of OFA's victory in 2012 derived from the engagement of people of color not only in Whatcom County but throughout the nation. The 42nd district races in 2014 present opportunities particularly for the Democratic Party to engage many county based Hispanics and Native Americans and a surprising number of people of color who live in block groups or precincts that are part of the 42nd.  The data here is 2010 Block Group Data. For statewide only updated estimates see the Census data explorer.

The Democrats I grew up with in the Bay Area (e.g. Phil Burton, Willie Brown, Ronald Dellums, Barbara Lee, George Miller, Gus Newport among many other local politicians) made it a point to engage in political dialog with all of their constituencies in a state whose legacy included Cesar Chavez, the Black Panthers, and historical civil rights activism. I simply don't see this type of engagement from local political leaders in Washington state outside of perhaps Seattle. Yet the emerging electoral profile of WA state is increasingly made up of people of color. This is one view (race and ethnic groups are overlaid with transparent (alpha channel) color) of the  multi-racial spectrum of Whatcom County's non white citizens by Census Block Group. Click to Enlarge :

Note on this graphic: These population estimates in this charts are limited to 750 max for perspective. For grouped and not overlaid charts see Barcharts of All Races and Ethnicity (far below).


Although you would hardly suspect it walking through Bellingham, we can see from the (2010) Block Group CVAP figures below that 15.8% of Whatcom County citizens are not "White Alone" and that approximately 12.6% of voting age citizens are not "White Alone". For the 2013 Census, nearly 20% of all Whatcom County residents are not "White Alone". Below: Table listing race and ethnic categories from the Census American Community Survey CVAP Block Groups (2010): 

Race.Ethnicity CIT_EST CVAP_EST CIT.CVAP.DIFF CVAP.CIT.PCT
Total 190180 149235 40945 78.47%
Not Hispanic or Latino 178280 142995 35285 80.21%
White Alone 160085 130320 29765 81.41%
Hispanic or Latino 11928 6255 5673 52.44%
Asian Alone 5535 4152 1383 75.01%
American Indian or Alaska Native Alone 5062 3654 1408 72.18%
Asian and White 1855 1139 716 61.40%
American Indian or Alaska Native and White 1841 1255 586 68.17%
Black or African American Alone 1681 1248 433 74.24%
Black or African American and White 949 439 510 46.26%
Remainder of Two or More Race Responses 847 396 451 46.75%
Native Hawaiian or Other Pacific Islander Alone 372 372 0 100.00%
American Indian or Alaska Native and Black or African American 29 14 15 48.28%

As I discussed in a previous post, the 177 Whatcom county precincts(red an blue) and the 102 Census Block Groups (yellow) don't overlap or match up.  The CVAP block group shapes titled with their respective GEOID numbers as file numbers can be downloaded here. Click to enlarge.

Above: The 102 Whatcom County Block Groups in yellow. Bottom: 177 Whatcom County  and City of Bellingham Precincts (red and blue). 

SQL Queries for Races/Ethnicity in Whatcom County

We can use the block group shapes and locations combined with CVAP data to tell us:
  1. How many citizens of a particular race/ethnicity live in a particular block group
  2. How many are of each are of voting age
The SQL for such queries looks like this:

Select Distinct(LNTITLE) from blockgr_wc;
                           lntitle
---------------------------------------------------------------
American Indian or Alaska Native and Black or African American
Remainder of Two or More Race Responses
Total
Not Hispanic or Latino
Asian Alone
American Indian or Alaska Native and White
Black or African American and White
Native Hawaiian or Other Pacific Islander Alone
Asian and White
Black or African American Alone
White Alone
Hispanic or Latino
American Indian or Alaska Native Alone
13 rows)

Select GEOID,LNTITLE,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from blockgr_wc where LNTITLE = 'Hispanic or Latino' Group By GEOID,LNTITLE ORDER By SUMCIT DESC LIMIT 20;
        geoid        |      lntitle       | sumcit | sumcvap
---------------------+--------------------+--------+---------
 15000US530730009012 | Hispanic or Latino |    510 |     215
 15000US530730002002 | Hispanic or Latino |    500 |     290
 15000US530730007001 | Hispanic or Latino |    455 |      70
 15000US530730106001 | Hispanic or Latino |    410 |     315
 15000US530730104031 | Hispanic or Latino |    365 |     100
 15000US530730102004 | Hispanic or Latino |    325 |     110
 15000US530730008062 | Hispanic or Latino |    300 |     105
 15000US530730103012 | Hispanic or Latino |    290 |     145
 15000US530730104041 | Hispanic or Latino |    290 |      50
 15000US530730102005 | Hispanic or Latino |    270 |     150
 15000US530730107021 | Hispanic or Latino |    245 |     170
 15000US530730001003 | Hispanic or Latino |    235 |     160
 15000US530730105021 | Hispanic or Latino |    225 |     165
 15000US530730003002 | Hispanic or Latino |    225 |      55
 15000US530730103032 | Hispanic or Latino |    225 |     120
 15000US530730005013 | Hispanic or Latino |    210 |     165
 15000US530730008063 | Hispanic or Latino |    200 |     105
 15000US530730107013 | Hispanic or Latino |    200 |      25
 15000US530739400001 | Hispanic or Latino |    200 |     120
 15000US530730105022 | Hispanic or Latino |    200 |      55
(20 rows)

Select GEOID,LNTITLE,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from blockgr_wc where LNTITLE = 'Asian Alone' Group By GEOID,LNTITLE ORDER By SUMCIT DESC LIMIT 20;

        geoid        |   lntitle   | sumcit | sumcvap
---------------------+-------------+--------+---------
 15000US530730104031 | Asian Alone |    365 |     165
 15000US530730001003 | Asian Alone |    345 |     295
 15000US530730007003 | Asian Alone |    275 |     275
 15000US530730012013 | Asian Alone |    245 |     245
 15000US530730104041 | Asian Alone |    230 |     115
 15000US530730103032 | Asian Alone |    230 |     140
 15000US530730007001 | Asian Alone |    220 |      90
 15000US530730009021 | Asian Alone |    220 |     125
 15000US530730008034 | Asian Alone |    215 |     175
 15000US530730008042 | Asian Alone |    170 |     145
 15000US530730008033 | Asian Alone |    160 |     110
 15000US530730105011 | Asian Alone |    125 |      70
 15000US530730011003 | Asian Alone |    115 |      95
 15000US530730104013 | Asian Alone |    115 |      95
 15000US530730104012 | Asian Alone |    110 |      85
 15000US530730104032 | Asian Alone |     90 |      40
 15000US530730003002 | Asian Alone |     85 |      85
 15000US530730007002 | Asian Alone |     85 |      85
 15000US530730004001 | Asian Alone |     80 |      25
 15000US530739400001 | Asian Alone |     80 |      75
(20 rows)

Select GEOID,LNTITLE,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from blockgr_wc where LNTITLE = 'American Indian or Alaska Native Alone' Group By  GEOID,LNTITLE ORDER By SUMCIT DESC LIMIT 20;
        geoid        |                lntitle                 | sumcit | sumcvap
---------------------+----------------------------------------+--------+---------
 15000US530739400001 | American Indian or Alaska Native Alone |   1910 |    1340
 15000US530730101004 | American Indian or Alaska Native Alone |    295 |     235
 15000US530730003001 | American Indian or Alaska Native Alone |    275 |     175
 15000US530730007002 | American Indian or Alaska Native Alone |    275 |     275
 15000US530730107021 | American Indian or Alaska Native Alone |    235 |     150
 15000US530730002001 | American Indian or Alaska Native Alone |    230 |      65
 15000US530739400002 | American Indian or Alaska Native Alone |    210 |     140
 15000US530730006001 | American Indian or Alaska Native Alone |    180 |     165
 15000US530730001003 | American Indian or Alaska Native Alone |    160 |     145
 15000US530730105012 | American Indian or Alaska Native Alone |    150 |     105
 15000US530730107022 | American Indian or Alaska Native Alone |     90 |      45
 15000US530730008051 | American Indian or Alaska Native Alone |     85 |      30
 15000US530730106001 | American Indian or Alaska Native Alone |     85 |      10
 15000US530730104031 | American Indian or Alaska Native Alone |     75 |      75
 15000US530730007003 | American Indian or Alaska Native Alone |     65 |      45
 15000US530730107013 | American Indian or Alaska Native Alone |     60 |      60
 15000US530730105011 | American Indian or Alaska Native Alone |     50 |      50
 15000US530730102001 | American Indian or Alaska Native Alone |     50 |      30
 15000US530730009011 | American Indian or Alaska Native Alone |     45 |      45
 15000US530730008041 | American Indian or Alaska Native Alone |     40 |      10
(20 rows)

WC2014_08_01_2014=# Select GEOID,LNTITLE,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from blockgr_wc where LNTITLE = 'Black or African American Alone' Group By GEOID,LNTITLE OR
DER By SUMCIT DESC LIMIT 20;
        geoid        |             lntitle             | sumcit | sumcvap
---------------------+---------------------------------+--------+---------
 15000US530730104041 | Black or African American Alone |    135 |      95
 15000US530730012013 | Black or African American Alone |    120 |      70
 15000US530730009022 | Black or African American Alone |    105 |      50
 15000US530730105012 | Black or African American Alone |     95 |      65
 15000US530730002003 | Black or African American Alone |     90 |      90
 15000US530730009012 | Black or African American Alone |     70 |      70
 15000US530730001002 | Black or African American Alone |     65 |      40
 15000US530730008033 | Black or African American Alone |     55 |       0
 15000US530730008042 | Black or African American Alone |     55 |      55
 15000US530730101005 | Black or African American Alone |     50 |      50
 15000US530730006001 | Black or African American Alone |     45 |      45
 15000US530730008062 | Black or African American Alone |     45 |      45
 15000US530730012011 | Black or African American Alone |     40 |      40
 15000US530730104032 | Black or African American Alone |     40 |      15
 15000US530730103032 | Black or African American Alone |     35 |      15
 15000US530730007001 | Black or African American Alone |     35 |       0
 15000US530730003004 | Black or African American Alone |     35 |      35
 15000US530730010002 | Black or African American Alone |     35 |      35
 15000US530730103021 | Black or African American Alone |     30 |      10
 15000US530730011003 | Black or African American Alone |     30 |      30
(20 rows)


We can use a more complicated query to tell us those block groups that have the most non-white citizens:

Select GEOID,Sum(CIT_EST) AS SUMCIT,Sum(CVAP_EST) AS SUMCVAP from BlockGr_wc where (LNTITLE !=  'Total') AND (LNTITLE != 'White Alone') AND (LNTITLE != 'Not Hispanic or Latino') Group By GEOID having (SUM(CIT_EST) != 0) or (SUM(CVAP_EST) != 0) ORDER By SUMCIT DESC LIMIT 20;
        geoid        | sumcit | sumcvap
---------------------+--------+---------
 15000US530739400001 |   2470 |    1655
 15000US530730001003 |   1065 |     764
 15000US530730104031 |    865 |     400
 15000US530730104041 |    744 |     304
 15000US530730007001 |    710 |     160
 15000US530730103032 |    655 |     345
 15000US530730107021 |    620 |     390
 15000US530730002002 |    615 |     405
 15000US530730009012 |    615 |     320
 15000US530730003001 |    605 |     360
 15000US530730012013 |    605 |     535
 15000US530730007002 |    585 |     410
 15000US530730105012 |    560 |     305
 15000US530730008062 |    555 |     300
 15000US530730106001 |    530 |     350
 15000US530730007003 |    489 |     415
 15000US530730008051 |    485 |     300
 15000US530730101004 |    463 |     367
 15000US530730008042 |    460 |     315
 15000US530730010002 |    455 |     365
(20 rows)

GIS code that matches these block groups to precincts and voting lists I will leave for another post. However, visual inspection allows us to match the top ten 'non-white' citizen estimates (table above in blue) with their appropriate block groups in Whatcom County:


We can merge the usual fields of the Census block group distribution with the CVAP estimates to give us helpful latitude and longitude of existing block groups:

GEOID of Block Groups by Location 

sqldf("Select GEOID,INTPTLAT,INTPTLON,CIT_EST,CVAP_EST from WC_Block ORDER BY INTPTLAT,INTPTLON")
           GEOID    INTPTLAT     INTPTLON CIT_EST CVAP_EST
1   530730012022 +48.6558619 -122.5038085     685      590
2   530730012021 +48.6669151 -122.4212265    1035      820
3   530730008061 +48.6921660 -122.2652852    2395     1730
4   530730109001 +48.6934263 -122.6794705     980      900
5   530730012023 +48.7089201 -122.4809786     515      505
6   530730009021 +48.7098274 -122.4465896    3535     2695
7   530730012024 +48.7106068 -122.4925886     880      690
8   530730008062 +48.7120483 -122.3548321    2805     2280
9   530730011003 +48.7150195 -122.5187975    2755     2380
10  530730008063 +48.7175215 -122.3279003    2345     1790
11  530730012012 +48.7187165 -122.4958403     955      870
12  530730012011 +48.7210267 -122.4882090    2075     1985
13  530730012013 +48.7229280 -122.4787300    3820     3545
14  530730011002 +48.7232103 -122.5004883    1285     1270
15  530730008051 +48.7260983 -122.3888087    2560     2075
16  530730011001 +48.7270762 -122.5060373    2650     2210
17  530730101004 +48.7279270 -122.1394271    2095     1840
18  530730009022 +48.7280520 -122.4621212    2185     1730
19  530730010001 +48.7336452 -122.4833213    2240     2240
20  530730008053 +48.7339542 -122.3706223     820      680
21  530730010002 +48.7378611 -122.4732904    1700     1535
22  530730009011 +48.7403084 -122.4613583    1740     1545
23  530730009013 +48.7415525 -122.4427263    2220     1820
24  530730010003 +48.7430797 -122.4810938    2715     2610
25  530730005013 +48.7456101 -122.4696043    1790     1580
26  530730006001 +48.7478908 -122.4859588    1395     1210
27  530730008052 +48.7492606 -122.4067977    1445     1130
28  530730009012 +48.7502108 -122.4486756    2515     1790
29  530739400001 +48.7523343 -122.6392227    3135     2195
30  530730005022 +48.7536468 -122.4908114     900      750
31  530730005012 +48.7553291 -122.4680353     785      680
32  530730008031 +48.7583331 -122.4368148    1410     1230
33  530730004003 +48.7588035 -122.4964198    2230     1835
34  530730007002 +48.7589789 -122.4527858    2390     1935
35  530730008041 +48.7598056 -122.3796655    2675     2080
36  530730005021 +48.7608715 -122.4788525    1175      995
37  530730008032 +48.7610418 -122.4283483     685      660
38  530730005011 +48.7647419 -122.4677358    1515     1200
39  530730004002 +48.7662345 -122.4848803    1465     1180
40  530730003003 +48.7663869 -122.5182667     780      595
41  530730007001 +48.7670116 -122.4424033    2355     1425
42  530730007003 +48.7675329 -122.4570766    1975     1625
43  530730008034 +48.7730953 -122.4396664    2090     1690
44  530730008033 +48.7735324 -122.4258109    1420     1185
45  530730004001 +48.7737789 -122.4801570    2490     1975
46  530730003001 +48.7754822 -122.5107316    2835     2200
47  530730008042 +48.7762692 -122.4168537    4590     3535
48  530730003004 +48.7789049 -122.4958852    2200     1695
49  530730001001 +48.7821562 -122.3386163    1105      865
50  530730003002 +48.7861956 -122.5006325    1165      895
51  530730002002 +48.7930145 -122.5392519    2385     1745
52  530730001003 +48.7996814 -122.4619102    5265     4295
53  530730002001 +48.7997671 -122.5706804    1230      900
54  530730002003 +48.8002717 -122.5122553    2100     1995
55  530739400002 +48.8071913 -122.6532447    1490     1240
56  530730002004 +48.8205396 -122.5154650    2680     2085
57  530730101001 +48.8219671 -121.3586126     150       95
58  530730001002 +48.8258435 -122.4014881    2245     1840
59  530730107022 +48.8268828 -122.3230201    1610     1215
60  530730105013 +48.8344134 -122.6289396    1185     1070
61  530730106001 +48.8396303 -122.5486101    2200     1715
62  530730107012 +48.8411418 -122.4241178    1770     1440
63  530730105024 +48.8420134 -122.6015385    1005      860
64  530730101003 +48.8509806 -122.0707239    1005      685
65  530730105012 +48.8556824 -122.6086893    3095     2100
66  530730105023 +48.8561103 -122.5928431    1560     1125
67  530730106002 +48.8587120 -122.5078557    2050     1540
68  530730105022 +48.8655957 -122.6046762    2025     1285
69  530730101005 +48.8704356 -122.1857670    1785     1225
70  530730105021 +48.8766049 -122.5712558    1920     1600
71  530730107013 +48.8825488 -122.4248438    1610     1210
72  530730106003 +48.8830771 -122.5353756    1820     1430
73  530730107021 +48.8854735 -122.3605804    2080     1475
74  530730105011 +48.8889116 -122.7854839    2705     1940
75  530730102001 +48.8916809 -122.2669016    1250      995
76  530730104041 +48.9021484 -122.7644472    2855     1940
77  530730107011 +48.9104767 -122.4380561    1485     1070
78  530730104042 +48.9114159 -122.6214432    2380     1800
79  530730104043 +48.9244621 -122.7395880     805      655
80  530730103012 +48.9271602 -122.5574361    2225     1505
81  530730102004 +48.9289620 -122.3343828    2545     1700
82  530730103022 +48.9383935 -122.4608223    1165      960
83  530730103013 +48.9437311 -122.4767063    2250     1860
84  530730102003 +48.9452392 -122.2892586     560      395
85  530730104015 +48.9534547 -122.7050134    1145      765
86  530730104032 +48.9547640 -122.7379769    1435     1060
87  530730103032 +48.9550092 -122.4356332    3810     2725
88  530730103021 +48.9551093 -122.4567929    3080     2250
89  530730104017 +48.9554072 -122.6450664    1865     1365
90  530730104031 +48.9617589 -122.8079958    3125     2510
91  530730102005 +48.9729745 -122.3576176    1260      805
92  530730110002 +48.9735513 -123.0826544     595      465
93  530730101002 +48.9739679 -122.0350444    3765     2685
94  530730103011 +48.9748939 -122.5387991    1575     1080
95  530730110001 +48.9807878 -123.0297037     405      390
96  530730104014 +48.9826667 -122.7172917     490      380
97  530730103031 +48.9841683 -122.4324484    1180      670
98  530730104013 +48.9859560 -122.7456251    1425      955
99  530730102002 +48.9885201 -122.2323756    1580     1220
100 530730104016 +48.9897651 -122.6319241    1485      985
101 530730104012 +48.9934175 -122.7328445    1230      870
102 530730104011 +48.9963797 -122.7578684     735      595

Barcharts of all races/ethnicity in Whatcom County

Below are one barplots and eight barcharts  from the R base graphics and lattice packages.  These grouped charts provide a more specific idea of race/ethnic distributions in Whatcom County. The scales in the lattice barcharts are different  for each graph. I have sorted all these block groups by GEOID. With all the charts, it is important to note that although some block groups are more populous with people of color than others.  None of the  102 Census block groups in Whatcom County are completely "White Alone". Click on charts to enlarge.










No comments: